269 research outputs found

    Preoperative liver registration for augmented monocular laparoscopy using backward–forward biomechanical simulation

    Get PDF
    PURPOSE: Augmented reality for monocular laparoscopy from a preoperative volume such as CT is achieved in two steps. The first step is to segment the organ in the preoperative volume and reconstruct its 3D model. The second step is to register the preoperative 3D model to an initial intraoperative laparoscopy image. To date, there does not exist an automatic initial registration method to solve the second step for the liver in the de facto operating room conditions of monocular laparoscopy. Existing methods attempt to solve for both deformation and pose simultaneously, leading to nonconvex problems with no optimal solution algorithms. METHODS: We propose in contrast to break the problem down into two parts, solving for (i) deformation and (ii) pose. Part (i) simulates biomechanical deformations from the preoperative to the intraoperative state to predict the liver’s unknown intraoperative shape by modeling gravity, the abdominopelvic cavity’s pressure and boundary conditions. Part (ii) rigidly registers the simulated shape to the laparoscopy image using contour cues. RESULTS: Our formulation leads to a well-posed problem, contrary to existing methods. This is because it exploits strong environment priors to complement the weak laparoscopic visual cues. CONCLUSION: Quantitative results with in silico and phantom experiments and qualitative results with laparosurgery images for two patients show that our method outperforms the state-of-the-art in accuracy and registration time

    Deformable Registration of a Preoperative 3D Liver Volume to a Laparoscopy Image Using Contour and Shading Cues

    Get PDF
    The deformable registration of a preoperative organ volume to an intraoperative laparoscopy image is required to achieve augmented reality in laparoscopy. This is an extremely challenging objective for the liver. This is because the preoperative volume is textureless, and the liver is deformed and only partially visible in the laparoscopy image. We solve this problem by modeling the preoperative volume as a Neo-Hookean elastic model, which we evolve under shading and contour cues. The contour cues combine the organ’s silhouette and a few curvilinear anatomical landmarks. The problem is difficult because the shading cue is highly nonconvex and the contour cues give curve-level (and not point-level) correspondences. We propose a convergent alternating projections algorithm, which achieves a 44% registration error

    PRIMA subretinal wireless photovoltaic microchip implantation in non-human primate and feline models

    Get PDF
    PURPOSE: To evaluate the surgical technique for subretinal implantation of two sizes of PRIMA photovoltaic wireless microchip in two animal models, and refine these surgical procedures for human trials. METHODS: Cats and Macaca fascicularis primates with healthy retina underwent vitrectomy surgery and were implanted with subretinal wireless photovoltaic microchip at the macula/central retina. The 1.5mm PRIMA chip was initially studied in feline eyes. PRIMA implant (2mm,1.5mm sizes) arrays were studied in primates. Feasibility of subretinal chip implantation was evaluated with a newly-developed surgical technique, with surgical complications and adverse events recorded. RESULTS: The 1.5mm implant was placed in the central retina of 11 feline eyes, with implantation duration 43-106 days. The 1.5mm implant was correctly positioned into central macula of 11 primate eyes, with follow-up periods of minimum 6 weeks (n = 11), 2 years (n = 2), and one eye for 3 years. One primate eye underwent multi-chip 1.5mm implantation using two 1.5mm chips. The 2mm implant was delivered to 4 primate eyes. Optical coherence tomography confirmed correct surgical placement of photovoltaic arrays in the subretinal space in all 26 eyes. Intraoperative complications in primate eyes included retinal tear, macular hole, retinal detachment, and vitreous hemorrhage that resolved spontaneously. Postoperatively, there was no case of significant ocular inflammation in the 1.5mm implant group. CONCLUSIONS: We report subretinal implantation of 1.5mm and 2mm photovoltaic arrays in the central retina of feline and central macula of primate eyes with a low rate of device-related complications. The in vivo PRIMA implantation technique has been developed and refined for use for a 2mm PRIMA implant in ongoing human trials

    Modes of Foreign Entry under Asymmetric Information about Potential Technology Spillovers

    Get PDF
    This paper studies the effect of technology spillovers on the entry decision of a multinational enterprise into a foreign market. Two alternative entry modes for a foreign direct investment are considered: Greenfield investment versus acquisition. We find that with quantity competition a spillover makes acquisitions less attractive, while with price competition acquisitions become more attractive. Asymmetric information about potential spillovers always reduces the number of acquisitions independently of whether the host country or the entrant has private information. Interestingly, we find that asymmetric information always hurts the entrant, while it sometimes is in favor of the host country

    Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage.

    Get PDF
    Colibactin is an assumed human gut bacterial genotoxin, whose biosynthesis is linked to the clb genomic island that has a widespread distribution in pathogenic and commensal human enterobacteria. Colibactin-producing gut microbes promote colon tumour formation and enhance the progression of colorectal cancer via cellular senescence and death induced by DNA double-strand breaks (DSBs); however, the chemical basis that contributes to the pathogenesis at the molecular level has not been fully characterized. Here, we report the discovery of colibactin-645, a macrocyclic colibactin metabolite that recapitulates the previously assumed genotoxicity and cytotoxicity. Colibactin-645 shows strong DNA DSB activity in vitro and in human cell cultures via a unique copper-mediated oxidative mechanism. We also delineate a complete biosynthetic model for colibactin-645, which highlights a unique fate of the aminomalonate-building monomer in forming the C-terminal 5-hydroxy-4-oxazolecarboxylic acid moiety through the activities of both the polyketide synthase ClbO and the amidase ClbL. This work thus provides a molecular basis for colibactin's DNA DSB activity and facilitates further mechanistic study of colibactin-related colorectal cancer incidence and prevention

    PRIMA subretinal wireless photovoltaic microchip implantation in non-human primate and feline models

    Get PDF
    Purpose To evaluate the surgical technique for subretinal implantation of two sizes of PRIMA photovoltaic wireless microchip in two animal models, and refine these surgical procedures for human trials. Methods Cats and Macaca fascicularis primates with healthy retina underwent vitrectomy surgery and were implanted with subretinal wireless photovoltaic microchip at the macula/central retina. The 1.5mm PRIMA chip was initially studied in feline eyes. PRIMA implant (2mm,1.5mm sizes) arrays were studied in primates. Feasibility of subretinal chip implantation was evaluated with a newly-developed surgical technique, with surgical complications and adverse events recorded. Results The 1.5mm implant was placed in the central retina of 11 feline eyes, with implantation duration 43-106 days. The 1.5mm implant was correctly positioned into central macula of 11 primate eyes, with follow-up periods of minimum 6 weeks (n = 11), 2 years (n = 2), and one eye for 3 years. One primate eye underwent multi-chip 1.5mm implantation using two 1.5mm chips. The 2mm implant was delivered to 4 primate eyes. Optical coherence tomography confirmed correct surgical placement of photovoltaic arrays in the subretinal space in all 26 eyes. Intraoperative complications in primate eyes included retinal tear, macular hole, retinal detachment, and vitreous hemorrhage that resolved spontaneously. Postoperatively, there was no case of significant ocular inflammation in the 1.5mm implant group. Conclusions We report subretinal implantation of 1.5mm and 2mm photovoltaic arrays in the central retina of feline and central macula of primate eyes with a low rate of device-related complications. The in vivo PRIMA implantation technique has been developed and refined for use for a 2mm PRIMA implant in ongoing human trials

    The multidrug resistance 1 (MDR1) gene polymorphism G-rs3789243-A is not associated with disease susceptibility in Norwegian patients with colorectal adenoma and colorectal cancer; a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Smoking, dietary factors, and alcohol consumption are known life style factors contributing to gastrointestinal carcinogenesis. Genetic variations in carcinogen handling may affect cancer risk. The multidrug resistance 1(<it>MDR1/ABCB1</it>) gene encodes the transport protein P-glycoprotein (a phase III xenobiotic transporter). P-glycoprotein is present in the intestinal mucosal lining and restricts absorption of certain carcinogens, among these polycyclic aromatic hydrocarbons. Moreover, P-glycoprotein transports various endogenous substrates such as cytokines and chemokines involved in inflammation, and may thereby affect the risk of malignity. Hence, genetic variations that modify the function of P-glycoprotein may be associated with the risk of colorectal cancer (CRC). We have previously found an association between the <it>MDR1 </it>intron 3 G-rs3789243-A polymorphism and the risk of CRC in a Danish study population. The aim of this study was to investigate if this <it>MDR1 </it>polymorphism was associated with risk of colorectal adenoma (CA) and CRC in the Norwegian population.</p> <p>Methods</p> <p>Using a case-control design, the association between the <it>MDR1 </it>intron 3 G-rs3789243-A polymorphism and the risk of colorectal carcinomas and adenomas in the Norwegian population was assessed in 167 carcinomas, 990 adenomas, and 400 controls. Genotypes were determined by allelic discrimination. Odds ratio (OR) and 95 confidence interval (95% CI) were estimated by binary logistic regression.</p> <p>Results</p> <p>No association was found between the <it>MDR1 </it>polymorphism (G-rs3789243-A) and colorectal adenomas or cancer. Carriers of the variant allele of MDR1 intron 3 had odds ratios (95% CI) of 0.97 (0.72–1.29) for developing adenomas, and 0.70 (0.41–1.21) for colorectal cancer, respectively, compared to homozygous wild type carriers.</p> <p>Conclusion</p> <p>The <it>MDR1 </it>intron 3 (G-rs3789243-A) polymorphism was not associated with a risk of colorectal adenomas or carcinomas in the present Norwegian study group. Thus, this <it>MDR1 </it>polymorphism does not seem to play an important role in colorectal carcinogenesis in this population.</p

    The Generation of Promoter-Mediated Transcriptional Noise in Bacteria

    Get PDF
    Noise in the expression of a gene produces fluctuations in the concentration of the gene product. These fluctuations can interfere with optimal function or can be exploited to generate beneficial diversity between cells; gene expression noise is therefore expected to be subject to evolutionary pressure. Shifts between modes of high and low rates of transcription initiation at a promoter appear to contribute to this noise both in eukaryotes and prokaryotes. However, models invoked for eukaryotic promoter noise such as stable activation scaffolds or persistent nucleosome alterations seem unlikely to apply to prokaryotic promoters. We consider the relative importance of the steps required for transcription initiation. The 3-step transcription initiation model of McClure is extended into a mathematical model that can be used to predict consequences of additional promoter properties. We show in principle that the transcriptional bursting observed at an E. coli promoter by Golding et al. (2005) can be explained by stimulation of initiation by the negative supercoiling behind a transcribing RNA polymerase (RNAP) or by the formation of moribund or dead-end RNAP-promoter complexes. Both mechanisms are tunable by the alteration of promoter kinetics and therefore allow the optimization of promoter mediated noise.Comment: 4 figures, 1 table. Supplemental materials are also include

    Grafted Human Embryonic Progenitors Expressing Neurogenin-2 Stimulate Axonal Sprouting and Improve Motor Recovery after Severe Spinal Cord Injury

    Get PDF
    7 p.Background: Spinal cord injury (SCI) is a widely spread pathology with currently no effective treatment for any symptom. Regenerative medicine through cell transplantation is a very attractive strategy and may be used in different non-exclusive ways to promote functional recovery. We investigated functional and structural outcomes after grafting human embryonic neural progenitors (hENPs) in spinal cord-lesioned rats.Methods and Principal Findings: With the objective of translation to clinics we have chosen a paradigm of delayed grafting, i.e., one week after lesion, in a severe model of spinal cord compression in adult rats. hENPs were either naive or engineered to express Neurogenin 2 (Ngn2). Moreover, we have compared integrating and non-integrating lentiviral vectors, since the latter present reduced risks of insertional mutagenesis. We show that transplantation of hENPs transduced to express Ngn2 fully restore weight support and improve functional motor recovery after severe spinal cord compression at thoracic level. This was correlated with partial restoration of serotonin innervations at lumbar level, and translocation of 5HT1A receptors to the plasma membrane of motoneurons. Since hENPs were not detectable 4 weeks after grafting, transitory expression of Ngn2 appears sufficient to achieve motor recovery and to permit axonal regeneration. Importantly, we also demonstrate that transplantation of naive hENPs is detrimental to functional recovery.Conclusions and Significance: Transplantation and short-term survival of Ngn2-expressing hENPs restore weight support after SCI and partially restore serotonin fibers density and 5HT1A receptor pattern caudal to the lesion. Moreover, grafting of naive-hENPs was found to worsen the outcome versus injured only animals, thus pointing to the possible detrimental effect of stem cell-based therapy per se in SCI. This is of major importance given the increasing number of clinical trials involving cell grafting developed for SCI patients.This study was supported by the European Union FP6 "RESCUE" STREP; the "Institut pour la Recherche sur la Moelle Epiniere"; the "Academie de Medecine"; the "Societe Francaise de Neurochirurgie"; "Verticale" and the "Association Demain Debout Aquitaine". The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    • …
    corecore